Top 10 Programming Language to learn in 2023

Are you a programming enthusiast looking to stay ahead of the curve in 2023? With the ever-evolving tech landscape, keeping up with the Best Programming Language to learn can be a daunting task. Fear not, as we have compiled a list of the top 10 Programming Languages that you should consider learning in 2023. Python: This versatile language continues to dominate in 2023, with its ease of use, readability, and a vast library of modules. JavaScript: As web development grows increasingly popular, JavaScript remains a crucial player, with its ability to create dynamic and interactive web pages. Java: This language has stood the test of time and remains a popular choice for enterprise software development. C++: A staple in the gaming and systems development industries, C++ offers exceptional performance and memory management. Swift: Apple's preferred language for iOS app development, Swift continues to grow in popularity with its simplicity and reliability. R: As data science and machin...

C Program for Laplace Algorithm | C Programming

Laplace Algorithm


Laplace’s approximation is one of the most fundamental asymptotic techniques for the estimation of integrals containing a large parameter or variable. For integrals of the form



where f(t) and ψ(t) are real continuous functions defined on the interval [a,b](which may be infinite), the dominant contribution as x+ arises from a neighborhood of the point where ψ(t) attains its maximum value. When ψ(t)possesses a single maximum at the point t0(a,b), so that ψ′(t0)=0ψ″(t0)<0 span="">and f(t0)≠0, then I(x) has the asymptotic behavior

Abstract


A new algorithm for the numerical inversion of Laplace transforms is presented. The algorithm requires that transform values F(z) are available at arbitrary points in the complex z plane. It involves the approximation of the exponential function est in the inversion integral by a two-parameter function. The approximated inversion integral is then expanded into two different infinite series: 

  1. partial fraction expansion by the Mittag-Leffler theorem; 
  2. power series expansion in est. 


In the numerical procedures, the summing of the infinite series are accelerated by a Wynn's type of in -algorithm. Trial runs on several test functions show that the results are highly accurate. The programming effort for the algorithm is minimal in comparison with other algorithms of comparable accuracy. The computation involves only a finite small number of function evaluations of the transform function. The method is believed to work for a wider range of functions since the algorithm does not make any assumption on representing f(t) by a linear combination of a certain class of basis functions.

C Code For Laplace Algorithm



#include<stdio.h>
#include<conio.h>
#include<math.h>
int main(){
	int n,i,j,k;
	float sum,error,E[10],a[10][10],b[10],new_x[10],old_x[10],tl,tr,tu,tb;
	printf("\nLaplace \n");
	printf("Enter the dimension of plate\n");
	scanf("%d",&n);
	printf("\nEnter the temperatures at left, right, bottom and top of the plate \n");
	scanf("%f%f%f%f",&tl,&tr,&tb,&tu);
	//construction of coefficient matrix
	for(i=0;i<=n;i++)
		a[i][i]=-4;
	for(i=0;i<=n;i++)
		a[i][n-i]=0;
	for(i=0;i<=n;i++)
	for(j=0;j<=n;j++){
		if(i!=j && j!=(n-i))
			a[i][j]=1;
	}
	
	//Construction of RHS vector
	for(i=0;i<=n;i++)
		b[i]=0;
		
	k=0;
	for(i=1;i<n;i++){
		for(j=1;j<n;j++){
			if((i-1)==0)
				b[k]=b[k]-tl;
			if((i+1)==n)
				b[k]=b[k]-tr;
			if((j-1)==0)
				b[k]=b[k]-tb;
			if((j+1)==n)
				b[k]=b[k]-tu;
			k++;
		}
	}
	
	printf("\nEnter accuracy limit\n");
	scanf("%f",&error);
	
	//Solving the system of linear equations using Gauss-Seidel method
	for(i=0;i<=n;i++){
		new_x[i]=0;
	}
	
	while(1){
		for(i=0;i<=n;i++){
			sum=b[i];
			for(j=0;j<=n;j++){
				if(i!=j)
					sum=sum-a[i][j]*new_x[j];
			}
			old_x[i]=new_x[i];
			new_x[i]=sum/a[i][i];
			E[i]=fabs(new_x[i]-old_x[i])/fabs(new_x[i]);
		}
		for(i=0;i<=n;i++){
			if(E[i]>error)
				break;
				
		}
		if(i==(n+1))
			break;
		else
			continue;
			
	}
	
	printf("\nsolution\n");
	for(i=0;i<=n;i++)
	printf("x%d=%6.2f\n",i+1,new_x[i]);
	getch();
	return 0;
}

Comments

Popular posts from this blog

Array in C Programming | C Programming

C program to Find Cartesian Product of Two Sets | C programming

What is System? | SAD